Kajian Variasi Temperatur Annealing dan holding time pada Penumbuhan Lapisan Tipis BaZr_{0,15}Ti_{0,85}O₃ dengan Metode Sol-Gel

S. Hadiati,^{1,2} A.H. Ramelan,¹ V.I Variani,³ M. Hikam,⁴ B. Soegijono,⁴ D.F. Saputri,^{1,2} dan Y. Iriani^{1,*}

¹Pascasarjana Ilmu Fisika, Universitas Sebelas Maret (UNS), Jl. Ir. Sutami 36A Kentingan, Surakarta 57126 ²Program Studi Pendidikan Fisika, STKIP PGRI Pontianak 78116 ³Jurusan Fisika FMIPA Universitas Haluoleo, Kendari 93232 ⁴Departemen Fisika, Universitas Indonesia

Intisari

Kajian ini bertujuan untuk mengetahui pengaruh variasi temperatur *annealing* dan *holding time* (waktu tahan) terhadap struktur kristal, ukuran partikel, dan ukuran butir lapisan tipis $BaZr_{0,15}Ti_{0,85}O_3$. Penumbuhan lapisan tipis menggunakan metode *Chemical Solution Deposition* (CSD) atau Sol Gel di atas substrat Pt/Si dengan *spin coater*. Proses Sol Gel meliputi persiapan sol (koloid), gelation dari sol, dan penguraian pelarut. Penumbuhan lapisan tipis menggunakan variasi temperatur *annealing* 800 dan 900°C, dan variasi *holding time* 3 dan 4 jam dengan kecepatan putar 4000 rpm. Lapisan tipis dikarakterisasi dengan XRD dan dilakukan penghalusan menggunakan metode Rietveld dengan program GSAS. Ukuran partikel didapat dengan formula Scherer serta alat SEM untuk mengetahui ukuran butir. Berdasarkan hasil analisis didapatkan bahwa variasi temperatur *annealing* dan *holding time* mempengaruhi struktur kristal, ukuran partikel, dan ukuran butir lapisan tipis. Bertambahnya temperatur *annealing* dan *holding time* maka parameter kisi semakin besar dengan a = b \neq c yang berarti memiliki struktur kristal tertragonal. Ukuran partikel semakin besar seiring dengan bertambahnya temperatur *annealing* dan *holding time*. Namun, ukuran butir tidak berpengaruh terhadap penambahan temperatur *annealing*.

ABSTRACT

This study purpose to determine the effect of variations of annealing temperature and holding time of the crystal structure, particle size, and grain size on $BaZr_{0,15}Ti_{0,85}O_3$ thin films. Growth of $BaZr_{0,15}Ti_{0,85}O_3$ thin filmsused Chemical Solution Deposition method (CSD) or Sol Gel on the substrate Pt/ Si were prepared by spin coater. These steps the preparation of CSD include sol (colloidal), gelation of the sol, and removal solvent. Growth of thin films using variation of the annealing temperature 800 and 900°CC, and variation of holding time 3 and 4 hours with a rotational speed of 4000 rpm. Thinfilmshave been made then characterized by XRD and refinement performed using the Rietveld method by the GSAS program for to determine the crystal structure. The particle size obtained by Scherer formula and SEM tool to determine the grain size. Based on the analysis it can be concluded that the variation of the annealing temperature and holding time affects the crystal structure, particle size and grain size of the $BaZr_{0,15}Ti_{0,85}O_3$.thinfilm With increasing annealing temperature and holding time. However, the annealing temperature variations for the grain size can not be determined.

KATA KUNCI: Annealing, Barium Zirconium Titanate, crystal structure, sol gel

I. PENDAHULUAN

Material ferroelektrik merupakan salah satu bukti dari perkembangan ilmu pengetahuan dan teknologi khususnya bidang material yang telah dikembangkan sejak tahun 1960an. Sampai saat ini, terus dilakukan upaya-upaya untuk meningkatkan ilmu pengetahuan dan teknologi di segala bidang tidak terkecuali pada bidang material dan terus dilakukan pengembangan terbaru dari *smart material* terutama yang didasarkan pada bahan feroelektrik. Ferroelektrik merupakan material elektronik khususnya dielektrik yang terpolarisasi spontan dan memiliki kemampuan untuk mengubah arah listrik internalnya [1].

Material ferroelektrik berdasarkan sifat histeresis dan tetapan dielektrik yang tinggi dapat diterapkan pada sel memori *Dynamic Random Access Memory* (DRAM), sifat-sifat

^{*}E-MAIL: yopen_2005@yahoo.com

[©] Jurusan Fisika FMIPA ITS

piezoelektrik dapat digunakan sebagai mikroaktuator dan sensor, sifat *polaryzability* dapat diterapkan sebagai *Non Volatile Ferroelectric Random Acsess Memory* (NVFRAM), sifat pyroelektrik dapat diterapkan pada sensor infra merah dan sifat elektro optik dapat diterapkan pada *switch* termal infra merah [2]. Menurut Jona & Shirane [1], bahan ferroelektrik memiliki keunggulan yaitu mampu mengurangi kehilangan informasi selama proses berulang dan dapat menyimpan data lebih banyak dari material ferromagnetik yaitu hingga 108 bit/cm², sedangkan ferromagnetik hanya mampu menyimpan 105 bit/cm².

Material ferroelektrik yang sering digunakan antara lain Barium Titanate (BT), Barium Strontium Titanate (BST), Lead Zirconium Titanate (PZT) dan Barium Zirconium Titanate (BZT). Barium Zirconium Titanate (Ba $Zr_xTi_{1-x}O_3$) merupakan salah satu meterial ferroelektrik yang telah mendapat perhatian karena beberapa sifat dielektrik yang menarik terkait dengan transisi fase feroelektrik menuju paraelektrik dapat direalisasikan oleh substitusi Titanium (Ti) di situs B dari BaTiO₃ dengan Zirkonium (Zr) serta memiliki loss dielektrik rendah [3]. Barium Ziconium Titanate telah dipilih sebagai alternatif pengganti BST dalam fabrikasi kapasitor karena Zr⁴⁺ secara kimiawi lebih stabil dibandingkan Ti⁴⁺ dan memiliki ukuran ion yang lebih besar sehingga memperluas kisi perovskit [4]. BZT dengan berbagai komposisi Zr telah diteliti untuk mempelajari pengaruh kandungan Zr dalam lapisan tipis $BaZr_{x}Ti_{1-x}O_{3}$, dengan bertambahnya komposisi Zr maka dapat memperbesar parameter [5].

Penumbuhan lapisan tipis Ba $Zr_{x}Ti_{1-x}O_{3}$ dapat dilakukan dengan berbagai cara diantaranya: sputtering [6], metal organic chemical vapour deposition atau MOCVD [7] dan metode sol gel [8]. Penggunaan metode-metode tersebut mempunyaii tujuan untuk mendapatkan lapisan tipis yang baik dan aplikatif. Pada kajian ini, penumbuhan lapisan tipis BaZr_{0,15}Ti_{0,85}O₃ menggunakan metode sol gel atau Chemical Solution Deposition (CSD). Metode sol-gel adalah proses fase cairan untuk pembuatan bahan film keramik dan film tipis. Proses sol gel melibatkan persiapan sol (koloid), gelation dari sol, dan penguraian pelarut [3]. Metode ini memilki keunggulan yaitu mudah mengontrol stoikiometri, prosedur yang mudah, biaya yang murah dan dapat diterapkan pada temperatur yang rendah [9]. Metode ini dipilih karena biaya yang relatif rendah sehingga metode ini menjadi pilihan untuk penelitian ilmiah [10].

Dalam penumbuhan lapisan tipis, ada beberapa aspek yang harus diperhatikan diantaranya temperatur *annealing* dan *holding time*. *Annealing* dengan variasi temperatur dimaksudkan agar lapisan tipis yang terbentuk menuju kristal dan meningkatkan homogenitas serta kerapatan butiran kristal [11]. Temperatur *annealing* merupakan faktor yang sangat penting serta berpengaruh terhadap ukuran butir dan kekasaran morfologi. Kekasaran morfologi akan berpengaruh karena interface antara elektroda dan bahan dielektrik akan sangat mempengaruhi kebocoran arus dan kerusakan medan listrik pada film tipis. Parameter lain yang mempengaruhi lapisan tipis $BaZr_xTi_{1-x}O_3$ adalah *holding time*. Penambahan *holding time* menyebabkan peningkatan diameter butiran karena dengan peningkatan waktu tahan akan mendorong pengurangan jumlah kerusakan *non-bridging* oksigen sehingga mendukung pembentukan dari butiran [12].

Kajian ini membahas pengaruh variasi temperatur *annealing* dan *holding time* pada penumbuhan lapisan tipis $BaZr_{0,15}Ti_{0,85}O_3$ (BZT) dengan menggunakan metode sol gel yang disiapkan dengan *spin coater*. Lapisan tipis $BaZr_{0,15}Ti_{0,85}O_3$ yang terbentuk di atas substrat akan dikarakterisasi dengan XRD dan SEM serta dilakukan penghalusan menggunakan analisis Rietveld dengan software *General Structure Analysis System* (GSAS).

II. METODE PENELITIAN

Lapisan tipis BaZr_{0,15}Ti_{0,85}O₃ ditumbuhkan dengan metode sol gel. Ada tiga tahapan dalam metode ini yaitu persiapan sol (koloid), gelation dari sol, dan pen-Bahan yang digunakan terdiri guraian pelarut [3]. dari bubuk barium asetat [Ba(CH₃COO)₂], kemudian ditambahkan asam asetat (CH₃COOH), selanjutnya ditambahkan titanium isopropoksida [Ti(C1₂O₄H₂₈)] dan zirkonium butoxide $[Zr(O(CH_2)_3CH_3)_4]$ sehingga menjadi larutan $BaZr_{0.15}Ti_{0.85}O_3$. Setelah itu, etylene glycol ditambahkan pada larutan tersebut. Pt/Si digunakan sebagai substrat untuk proses pendeposisian lapisan tipis BaZr_{0,15}Ti_{0,85}O₃. Substrat tersebut ditetesi larutan BaZr_{0,15}Ti_{0,85}O₃ dan dilakukan proses spin coating dengan kecepatan putar 4000 rpm, dan jumlah lapis yaitu 5. Proses BaZr_{0.15}Ti_{0.85}O₃annealing dilakukan dengan variasi temperatur dan holding time. Temperatur annealing divariasi yaitu 800 dan 900°C, serta variasi holding time 3 dan 4 jam.

Lapisan tipis BaZr_{0,15}Ti_{0,85}O₃ yang telah dibuat selanjutnya dikarakterisasi dengan XRD (merk Bruker model D8 AD-VANCE dengan sumber radiasi (target) Cu dengan λ 1,5406 A dengan rentang sudut 20-40°)dan SEM serta dilakukan penghalusan menggunakan analisis Rietveld dengan software GSAS.

Data yang diperoleh dari XRD berupa data intensitas sinar X yang terdifraksi dan sudut difraksi (2θ). Puncak-puncak yang muncul menunjukkan satu bidang kristal yang memiliki orientasi tertentu. Puncak-puncak yang muncul dicocokkan dengan data base ICDD (*International Center for Diffraction Data*). PDF# 360019 untuk mengidentifikasi lapisan tipis BZT, PDF# 040802 untuk mengidentifikasi Pt, dan PDF# 830152 untuk mengidentifikasi Pt Si. Berdasarkan hasil data XRD dapat ditentukan ukuran partikel dengan menghitung FWHM (Full width Half Maximum) dapat ditentukanukuran partikel menggunakan formula Scherer [13] sebagai berikut:

$$D = \frac{0,9\lambda}{B \cos\theta} \tag{1}$$

dengan D adalah ukuran partikel, B lebar setengan puncak maksimum (*Full Width Half Maximum*), λ adalah panjang gelombang sinar-X dan θ adalah sudut Bragg pada puncak difraksi.

Raw material	Synthesis	Deposition	Substrate	characterization	Reference
TIO ₂ powder	TiO ₂ powder (1-3 g) + NaOH (60- 90mL, 10M) → mixture at 110-270 °Cin autoclave for 24 h → filtration and washed with a 1M HCJ, distilled water until the pH 7.0 → dried in a vacuum oven at 110 °C for 8 h			SEM, TEM, XRD, TGA	2008-Chung-Kung Lee et al, Journal of Hazardous Materials 150 (2008) 494– 503
TiO ₂ powder	TiO ₂ powder (0.5g) + water (1 ml) + acetyl acetone (0.1 ml) → pasta (dried at room temp. 60min, 150°C 15 min, anneal 450°C 30min)	doctor-blading	The FTO slides (sonicated for 15 min in water, etha nol, acetone, and then analytical grade ethanol).	FE-SEM, XRD, EDX, FTIR, UV- Vis	2013-Khuzaimah Arifin et al Ceramics International 39 (2013) 2699–2707
TiO ₂ powder	TiOz	spin coating at 2500 r/min for 30 s.	quartz	TEM, SAED, spectrophotometer	2012-M. M. El-NAHASS1 et al, Trans. Nonferrous Met. Soc. China 22(2012) 3003-3011
TiO ₂ powder	$\begin{array}{l} \text{TiO}_2\left(2g\right) + 100 \text{ mL 10M NaOH} \rightarrow \\ \text{microwave oven, 600 W, working at} \\ \text{a frequency of 2.45 GHz for 1 hour} \\ \rightarrow \text{washed distilled water and 0.1M} \\ \text{HCI and then distilled water} \rightarrow \\ \text{drying at room temperature} \rightarrow \\ \text{calching at 450°C} \end{array}$			XRD, SEM, TEM, UV-Vis	2008-Truong Van Chuong et al, Journal of the Korean Physical Society, 52(5), Mar 2008, pp. 1525-1529

Gambar 1: Pola difraksi lapisan tipis BaZr_{0,15}Ti_{0,85}O₃ variasi temperatur *annealing*.

III. HASIL DAN PEMBAHASAN

Telah berhasil ditumbuhkan lapisan tipis BaZr_{0,15}Ti_{0,85}O₃ di atas substrat Pt/Si dengan metode sol gel yang disiapkan dengan spin coater. Lapisan tipis BaZr_{0,15}Ti_{0,85}O₃ dikarakterisasi menggunakan peralatan XRD serta penghalusan dengan software GSAS untuk mengetahui struktur kristal dan ukuran partikel. Untuk mengetahui morfologi dan ukuran butirnya Lapisan tipis BaZr_{0,15}Ti_{0,85}O₃ dikarakterisasi menggunakan peralatan SEM.

Variasi Temperatur Annealing (Sebagai Data Pendukung)

Karakterisasi menggunakan peralatan XRD untuk mengidentifikasi tingkat kekristalan dari lapisan tipis $BaZr_{0,15}Ti_{0,85}O_3$. Hasil data XRD berupa grafik hubungan antara intensitas dan sudut difraksi (2 θ) seperti yang ditunjukkan pada Gambar 1. Puncak-puncak difraksi menunjukkan sampel $BaZr_{0,15}Ti_{0,85}O_3$ yang dibuat adalah kristal.

Gambar 1 menunjukkan pola difraksi untuk variasi temperatur *annealing*. Puncak-puncak yang muncul menunjukkan orientasi bidang tertentu. Puncak-puncak yang telah dicocokkan dengan data base ICDD PDF# 360019 adalah milik BaZr_{0,15}Ti_{0,85}O₃ yaitu pada $2\theta = 31^{\circ}$. Orientasi bidang milik BaZr_{0,15}Ti_{0,85}O₃ yang muncul yaitu (011). Setelah dilakukan penghalusan dengan sofware GSAS diketahui bahwa kristal BaZr_{0,15}Ti_{0,85}O₃ juga muncul di $2\theta = 22^{\circ}$ yaitu orientasi bidang (001).

Dari data hasil XRD dilakukan penghalusan menggunakan program GSAS dengan analisis Rietveld untuk memastikan puncak-puncak yang dicocokkan dengan data ICDD data base adalah benar milik BaZr_{0,15}Ti_{0,85}O₃ yaitu pada orientasi bidang (001) dan (011). Hasil penghalusan dengan program GSAS dapat dilihat pada Gambar 2.

Grafik warna hitam pada Gambar 2 menunjukkan data observasi (data hasil XRD), sedangkan grafik warna merah menunjukkan data kalkulasi (data yang terbaca oleh GSAS). Grafik warna biru merupakan selisih antara data observasi dan kalkulasi. Semakin kecil selisih antara data observasi dan kalkulasi menujukkan data yang baik. Grafik warna merah muda menunjukkan nilai least square, semakin kecil nilai least square maka grafik akan semakin mendekati garis lurus (linear). Berdasarkan Gambar 2 diketahui bahwa pada orientasi bidang kristal (001) dan (011) adalah benar milik $BaZr_{0,15}Ti_{0,85}O_3$ yang ditandai dengan adanya grafik warna

Gambar 2: Penghalusan pola difraksi dengan Sofware GSAS lapisan tipis $BaZr_{0,15}Ti_{0,85}O_3$ pada temperatur *annealing* (a). 800°C, (b). 900°C

TABEL I: Parameter kisi hasil penghalusan program GSAS pada variasi temperatur *annealing*.

Temperatur	Param	eter Kisi (A)
annealing	a = b	с
800	3,957	4,098
900	4,008	4,030

merah. Pada Gambar 2 diketahui bahwa selisih antara data observasi dan kalkulasi pada lapisan tipis $BaZr_{0,15}Ti_{0,85}O_3$ kecill (grafik warna biru) dan nilai least square (grafik warna merah muda) semakin mendekati garis lurus yang berarti menujukkan tingkat keakuratan data.

Dari hasil penghalusan data dengan program GSAS dapat ditentukan struktur kristal $BaZr_{0,15}Ti_{0,85}O_3$ yang terbentuk. Selain itu, berdasarkan program GSAS didapatkan parameter kisi baru dengan memasukkan input parameter kisi awal a = b = 3,988; c = 4,052 dan didapatkan nilai parameter kisi baru dari kristal $BaZr_{0,15}Ti_{0,85}O_3$ yang dibuat seperti pada Tabel I.

Pada Tabel I diketahui bahwa parameter kisi $a = b \neq c$ sehingga struktur kristal dari BaZr_{0,15}Ti_{0,85}O₃ adalah tetragonal. Seiring dengan penambahan temperatur *annealing* maka parameter kisi a dan b semakin besar. Hal ini disebabkan

Bidang		Intensitas BZT
	Temperatur 900°	Temperatur 800°
001	6997	1731
011	2137	4794

TABEL III: Ukuran partikel menggunakan formula Scherer pada varisi temperatur *annealing*.

Temperatur	Ukuran
annealing	Partikel(nm)
800	15
900	21

karena dengan penambahan temperatur *annealling* maka intensitas semakin besar. Intensitas yang tinggi menunjukkan tingkat kekristalan semakin tinggi. Bertambahnya temperatur *annealing* maka puncak difraksi semakin tinggi. Dengan intensitas yang tinggi maka tingkat kekristalan yang semakin tinggi pula menunjukkan tingkat kristal yang semakin baik.

Penambahan temperatur *annealing* tidak mempengaruhi perubahan sudut difraksi tetapi mempengaruhi intensitas. Pada Tabel II diketahui bahwa intensitas semakin tinggi seiring dengan penambahan temperatur *annealing* pada orientasi bidang (001).

Berdasarkan hasil data XRD dapat ditentukan ukuran partikel dengan menghitung FWHM (*Full width Half Maximum*). Analisis FWHM yang digunakan untuk menghitung ukuran partikel menggunakan bantuan progran OriginLab 8 karena dari hasil data XRD tidak dicantumkan nilai FWHM. Kemudian ukuran partikel dihitung dengan menggunakan formula Scherer seperti pada Tabel III.

Tabel III Menunjukkan semakin tinggi temperatur annealing maka ukuran partikelsemakin besar pula. Hubungan antara penambahan temperatur annealing terhadap FWHM dan ukuran partikel(particle size) dapat dilihat pada Gambar 4. Berdasarkan Gambar 4 dapat diketahui bahwa seiring temperatur annealing maka nilai FWHM semakin kecil. Hal ini berpengaruh terhadap ukuran partikel kristal. Semakin kecil FWHM maka ukuran partikel kristal semakin besar. Hal ini berhubungan dengan parameter kisi, seiring penambahan temperatur annealing maka intensitas semakin tinggi sehingga menyebabkan parameter kisi semakin besar. Dengan besarnya parameter kisi maka unit sel semakin besar pula sehingga ukuran partikel semakin besar. Ukuran partikel kristal semakin besar dengan penambahan temperatur [14]. Ukuran partikel kristal yang meningkat seiring dengan penambahan temperatur annealing disebabkan oleh semakin besar energi termal yang diterima [14].

Selain menggunakan formula Scherer, ukuran butir juga dapat ditentukan berdasarkan foto SEM. Foto SEM untuk menentukan morfologi permukaan lapisan tipis BZT dengan temperatur *annealing* seperti ditunjukkan pada Gambar 4. Perbesaran yang digunakan adalah 40.000 kali.

Gambar 4 menunjukkan foto SEM lapisan tipis BaZr_{0.15}Ti_{0.85}O₃ dengan variasi temperatur *annealing*.

Gambar 3: Hubungan antara variasi temperatur *annealing* terhadap FWHM dan ukuran partikel.

Gambar 4: Foto SEM lapisan tipis $BaZr_{0,15}Ti_{0,85}O_3$ pada temperatur *annealing* (a). 800, (b). 900°C.

Pada Gambar 5(a) dapat dilihat bahwa pada BaZr_{0,15}Ti_{0,85}O₃ dengan temperatur *annealing* 800°C ukuran butir tampak kecil. Berdasarkan foto SEM ukuran butir dapat ditentukan seperti pada Tabel IV. Batas butir tidak terlihat dengan jelas dan butiran yang terbentuk berukuran sekitar 50 nm. Pada Gambar 4(b) dapat dilihat bahwa pada BaZr_{0,15}Ti_{0,85}O₃ dengan temperatur *annealing* 900°C batas butir kristal BaZr_{0,15}Ti_{0,85}O₃ tidak dapat ditentukan. Butiran sudah menyatu karena proses difusi antara butiran. Ukuran butir BaZr_{0,15}Ti_{0,85}O₃ dengan temperatur *annealing* 900°C tampak tidak terlihat jelasdibanding dengan temperatur *annealing* 800°C yang memiliki ukuran butir sekitar 50 nm. Hal ini disebabkan karena peningkatan temperatur *annealing* lapisan tipis BaZr_{0,15}Ti_{0,85}O₃ menyebabkan mobilitas atom

TABEL IV: Ukuran butir lapisan tipis BaZr_{0,15}Ti_{0,85}O₃ pada varisi temperatur *annealing*.

Gambar 5: Pola Difraksi Lapisan Tipis $BaZr_{0,15}Ti_{0,85}O_3$ Variasi Holding Time.

sehingga kekasaran permukaan semakin tinggi pula.

Variasi holding time (Sebagai Data Pendukung)

Hasil data XRD untuk variasi *holding time* berupa grafik hubungan antara intensitas dan sudut difraksi (2θ) seperti yang ditunjukkan pada Gambar 5. Puncak-puncak difraksi yang telah dicocokkan dengan data base ICDD (International Center for Diffraction Data) PDF# 360019 menunjukkan sampel BaZr_{0.15}Ti_{0.85}O₃ yang dibuat adalah kristal.

Gambar 5 menunjukkan pola difraksi lapisan tipis untuk variasi *holding time*. Puncak-puncak yang muncul menunjukkan orientasi bidang tertentu. Puncak-puncak yang muncul telah dicocokkan dengan data base ICDD PDF# 360019 adalah milik BZT yaitu pada $2\theta = 31^{\circ}$ dengan orientasi bidang yaitu (011). Setelah dilakukan penghalusan menggunakan program GSAS dengan analisis Rietveld diketahui bahwa pada orientasi bidang (001) pada $2\theta = 22^{\circ}$ juga merupakan kristal milik BZT. Grafik hasil penghalusan dengan program GSAS dapat dilihat pada Gambar 6.

Pada Gambar 6 diketahui bahwa hasil penghalusan dengan program GSAS menunjukkan data kalkulasi (data kristal yang terbaca oleh GSAS) yang ditunjukkan dengan grafik warna merah. Berdasarkan Gambar 6 bahwa selisih antara data observasi dan kalkulasi semakin kecil menujukkan tingkat keakuratan data. Selain itu, diketahui nilai least square (grafik warna merah muda) semakin mendekati garis lurus (linear). pada orientasi bidang kristal (001) dan (011) adalah benar milik $BaZr_{0,15}Ti_{0,85}O_3$ yang ditandai dengan adanya grafik warna merah.

Selain untuk membuktikan bahwa kristal yang terbentuk adalah benar milik $BaZr_{0,15}Ti_{0,85}O_3$, hasil penghalusan data dengan GSAS dapat pula ditentukan nilai parameter kisi dari kristal $BaZr_{0,15}Ti_{0,85}O_3$ yang dibuat seperti pada Tabel V. Dari input parameter kisi awal a = b = 3,988; c = 4,052 didapatkan parameter kisi baru seperti pada Tabel V. Pada Tabel

Gambar 6: Penghalusan pola difraksi dengan Sofware GSAS lapisan tipis $BaZr_{0,15}Ti_{0,85}O_3$ dengan *holding time* (a). 3 jam, (b). 4 jam.

TABEL V: Parameter Kisi Hasil Penghalusan Program GSAS pada variasi *holding time*.

holding time	Parameter Kisi (A)		
-	$\mathbf{a} = \mathbf{b}$	с	
3jam	3,957	4,098	
4 jam	3,936	4,138	

V diketahui bahwa parameter kisi $a = b \neq c$ sehingga struktur kristal dari BZT adalah tetragonal. Seiring dengan penambahan *holding time* maka parameter kisi c semakin besar. Penambahan *holding time* menyebabkan intensitas semakin besar yang berarti tingkat kekristalan semakin tinggi.

Tabel VI menunjukkan seiring dengan bertambahnya *holding time* maka intensitas semakin tinggi. Bertambahnya *holding time* maka puncak difransi semakin tinggi pula [12]. Intensitas yang tinggi menunjukkan tingkat kekristalan yang semakin tinggi pula, sehingga dengan penambahan *holding time* menunjukkan tingkat kristal yang semakin baik.

Selain struktur kristal, ukuran partikel dapat ditentukan berdasarkan data hasil XRD. Nilai FWHM yang telah dida-

TABEL VI: Intensitas lapisan tipis BZT variasi holding time.

Bidang	Intensitas BZT	
	3 jam	4 jam
001	6780	7110
011	4794	5369

TABEL VII: Ukuran partikel menggunakan formula Scherer pada variasi *holding time*.

Gambar 7: Hubungan antara variasi *holding time* terhadap FWHM dan ukuran partikel.

pat menggunakan progran OriginLab 8 selanjutnya digunakan untuk menentukan ukuran partikel dengan menggunakan formula Scherer.

Berdasarkan Tabel VII dapat diketahui bahwa semakin lama *holding time* maka ukuran partikelsemakin besar. Berdasarkan data hasil XRD, seiring dengan penambahan *holding time* maka intensitas semakin tinggi. Intensitas yang tinggi menyebabkan parameter kisi semakin besar. Dengan besarnya parameter kisi maka unit sel semakin besar. Dengan besarnya parameter kisi maka unit sel semakin besar pula sehingga ukuran partikel semakin besar. Selanjutnya, hubungan antara variasi *holding time* terhadap FWHM dan ukuran partikel dapat dilihat pada Gambar 7. Gambar 7 menunjukkan seiring penambahan *holding time* maka nilai FWHM semakin kecil. Hal ini berpengaruh terhadap ukuran partikel. Semakin kecil FWHM maka ukuran partikel kristal semakin besar.

Berdasarkan foto SEM, morfologi dan ukuran butir permukaan lapisan tipis BaZr_{0,15}Ti_{0,85}O₃ dapat ditentukan. Gambar 8 menunjukkan morfologi dari lapisan tipis BaZr_{0.15}Ti_{0.85}O₃ variasi holding time dengan perbesaran 40.000 kali. Pada gambar 8(a) dapat dilihat bahwa pada BaZr_{0,15}Ti_{0,85}O₃ dengan holding time 3 jam ukuran butir tampak kecil. Batas butir tidak terlihat dengan jelas dan butiran yang terbentuk berukuran sekitar 50 nm. Pada gambar 8(b) dapat dilihat bahwa pada BaZr_{0,15}Ti_{0,85}O₃ dengan holding time 4 jam ukuran butir tampak besar. Batas butir terlihat dengan jelas dan butiran yang terbentuk berukuran sekitar 172 nm. Ukuran butir BaZr_{0,15}Ti_{0,85}O₃ dengan holding time 4 jam lebih besar dibandingkan BaZr_{0,15}Ti_{0,85}O₃ dengan holding time 3 jam seperti pada Tabel VIII. Penambahan holding time menyebabkan peningkatan diameter butiran. Hal ini disebabkan karena dengan peningkatan holding time akan mendorong pengurangan jumlah kerusakan non-bridging ok-

Gambar 8: Foto SEM lapisan tipis BaZr_{0,15}Ti_{0,85}O₃ dengan holding

TABEL VIII: Ukuran butir lapisan tipis $BaZr_{0,15}Ti_{0,85}O_3$ pada varisi temperatur *annealing*.

time (a). 3 jam, (b). 4 jam.

holding time	Ukuran Butir(nm)
3 jam	172
4 jam	50

sigen sehingga mendukung pembentukan dari butiran [12].

IV. SIMPULAN

Lapisan tipis BaZr_{0,15}Ti_{0,85}O₃ telah berhasil ditumbuhkan di atas substrat Pt/Si dengan metode sol gel yang disiapkan dengan spin coater. Variasi temperatur *annealing* dan *holding time* mempengaruhi struktur kristal, ukuran partikeldan ukuran butir lapisan tipis BaZr_{0,15}Ti_{0,85}O₃. Dengan bertambahnya temperatur *annealing* dan *holding time* maka parameter kisi semakin besar dengan $a = b \neq c$ yang berarti memiliki struktur kristal tertragonal. Ukuran partikel semakin besar seiring dengan bertambahnya temperatur *annealing* dan *holding time*. Ukuran butir semakin besar seiring dengan penambahan *holding time*. Namun, ukuran butir tidak berpengaruh terhadap penambahan temperatur *annealing*.

Ucapan Terima Kasih

Penulis mengucapkan terima kasih kepada Kementerian Riset dan Teknologi atas pendanaan melalui Insentif Riset Sinas 2012 dan Hibah DIPA BLU UNS dalam Hibah Penelitian Tim Pascasarjana dengan nomer kontrak No: 2341/UN27.10/PG/2012.

- [1] Azizahwati, Jurnal Natur Indonesia, **5** (1), 50-52 (2002).
- [2] K. Uchino, *Ferroelectric Device* (Marcel Dekker, New York, 2000).
- [3] D.A. Darbyshire, Development of Lead-Free Thin-Film Dielectrics for Capacitor Applications, Thesis, Cranfield University School of Applied Sciences Microsystems and Nanotechnology Centre, 2011.
- [4] J. Zhai, et al., J. Applied Physics Letters, 8, 157-161 (2004).
- [5] F.M. Pontes, *et al.*, J. Applied Physics, **96** (8), 4386-4391 (2004).
 [6] M.C. Wang, *et al.*, J. European Ceramic Society, **23**, 2307-2314
- (2003).[7] C. Gao, J. Zhai, X. Yao, J. Electroceram, 21, 653-656 (2007).
- [8] X. Chen, *et al.*, J. Sol-Gel Sci Technol, **57**, 149-156 (2010).
- [9] Hikam dkk., J. Makara Sains, 8 (3), 108-115 (2004).

- [10] U. Adem, Preparation of BST Thin Films By Chemical Solution Deposition and Their Electrical Characterization, Thesis, Department of Metallurgical & Materials Engineering, Middle East Technical University, 2003.
- [11] N.A.K. Umiati, *dkk.*, J. Kontribusi Fisika Indonesia, **12** (4), 94-98 (2001).
- [12] L.S. Cavalcante, *et al.*, J. of Alloys and Compounds, **437**, 269-273 (2007).
- [13] D. Djamas, J. EKSAKTA, 1, 9-18 (2010).
- [14] Hasbiyati, dan Triwikantoro, Analisis Fasa Kristal Bahan Gelas Metalik Berbasis Zirkonium antara Temperatur 410 -430°C, Seminar Nasional Pascasarjana IX ITS, Surabaya 12 Agustus 2009.